Extensions 1→N→G→Q→1 with N=C2 and Q=C42.6C4

Direct product G=N×Q with N=C2 and Q=C42.6C4
dρLabelID
C2×C42.6C464C2xC4^2.6C4128,1650


Non-split extensions G=N.Q with N=C2 and Q=C42.6C4
extensionφ:Q→Aut NdρLabelID
C2.1(C42.6C4) = C43.C2central extension (φ=1)128C2.1(C4^2.6C4)128,477
C2.2(C42.6C4) = C42.378D4central extension (φ=1)64C2.2(C4^2.6C4)128,481
C2.3(C42.6C4) = C43.7C2central extension (φ=1)128C2.3(C4^2.6C4)128,499
C2.4(C42.6C4) = C42.425D4central extension (φ=1)64C2.4(C4^2.6C4)128,529
C2.5(C42.6C4) = C23.32M4(2)central extension (φ=1)64C2.5(C4^2.6C4)128,549
C2.6(C42.6C4) = C428C8central extension (φ=1)128C2.6(C4^2.6C4)128,563
C2.7(C42.6C4) = C425C8central extension (φ=1)128C2.7(C4^2.6C4)128,571
C2.8(C42.6C4) = (C2×C8).Q8central stem extension (φ=1)128C2.8(C4^2.6C4)128,649
C2.9(C42.6C4) = C23.9M4(2)central stem extension (φ=1)64C2.9(C4^2.6C4)128,656
C2.10(C42.6C4) = C8.5M4(2)central stem extension (φ=1)164C2.10(C4^2.6C4)128,897
C2.11(C42.6C4) = C8.19M4(2)central stem extension (φ=1)324C2.11(C4^2.6C4)128,898

׿
×
𝔽